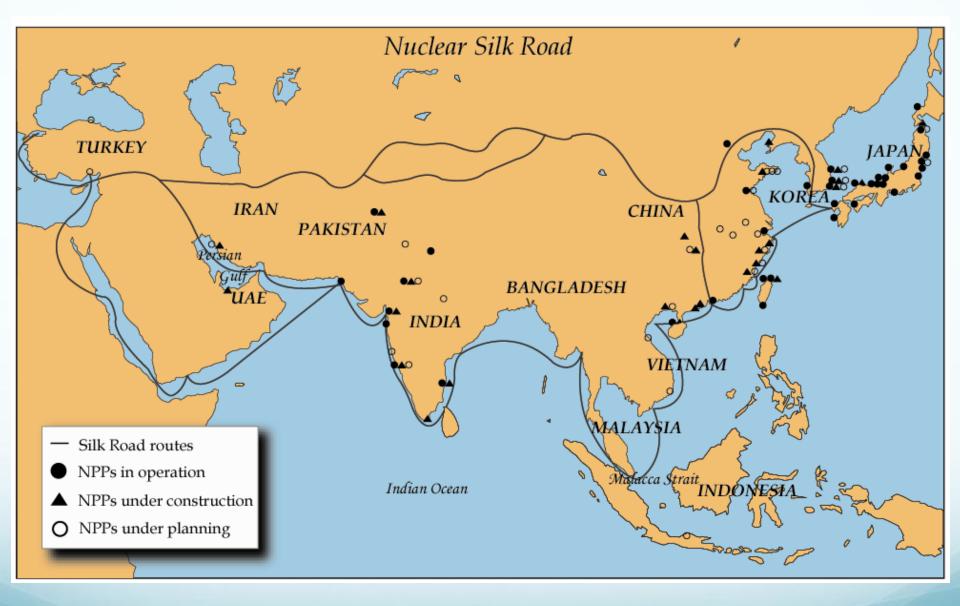
Post-Fukushima Action Plan in Korea

WNU-SI 2011, August 11 Christ Church, Oxford

Contents

Korean nuclear overview

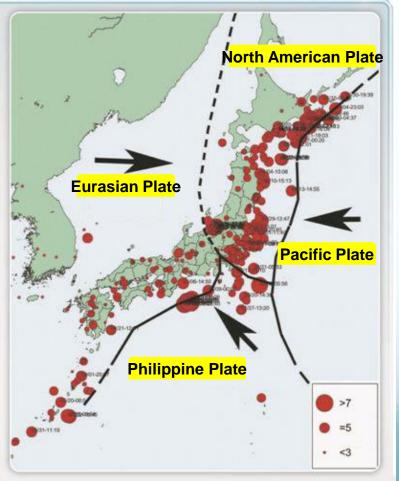

BK Kim

Government action plan

BS Jeong

Post-Fukushima action plan

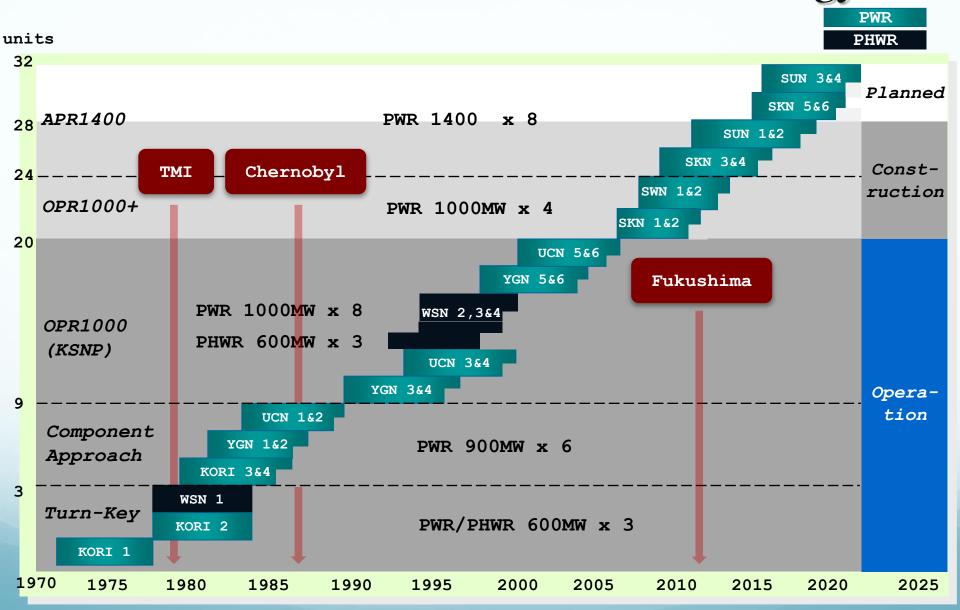
MK Jo



Nuclear Power Plants in the Silk Road Countries (2010)

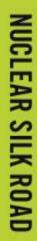
Geological Features of Korea

Earthquake Frequency in Korea, Japan and the world


MAGNITUDE	KOREA	JAPAN	WORLD	
3.0<	10	1,200	1,000,000	
4.0<	0,7	400	15,000	
5.0<	0.1	100	3,000	
6,0<	_	10	100	
		[Unit : oc	casion / year]	

Nuclear Map of Korea

Korean Nuclear Power Plants Chronology


This book is intended for international readers who may want to better understand the South Korean nuclear industrial success story. The news of the UAE nuclear power plant contract to the Korean consortium in 2009 a striking example of how the power of technology and the imagination of leaders have combined first to achieve sustainable development with the use of nuclear power to cover domestic electricity needs, then reaching out to the export market. In the dawn of the first turnkey nuclear export project from Korea, the international community might learn from South Korea's hard work. Somehow, little-known Korean nuclear entities managed to put their name on the map for the first time, which seemed unlikely, if not impossible, just a mere twenty-five years ago. Written as a testament to what a poor, developing country can do when pressed to excel. Kim focuses particular attention on the localization process of nuclear power technology in the 1980s. Ultimately, his benchmark memoir may shed light for other nations as they enter the brave new-and peaceful-nuclear world. After all, history repeats itself as new technologies travel the Silk Road, crossing civilizations.

Kim Byung-koo ("BK") studied at the Secul National University and the University of Michigan before receiving his doctorate in applied mechanics from the California Institute of Technology. Upon graduation, Dr. Kim worked as a test engineer at Jet Propulsion Laboratory in Pasadena, California until he returned to Korea, where he, among other duties, served as the project manager of the nation's first

nuclear power reactor system design project at the Korea Atomic Energy Research Institute. He then served as a Director of Technical Cooperation at the International Atomic Energy Agency in Vienna assisting many developing countries to promote their peaceful uses of nuclear energy. He currently lives in Daejeon, Korea. Nuclear Silk Road is his first book.

KIM BYUNG-KOO

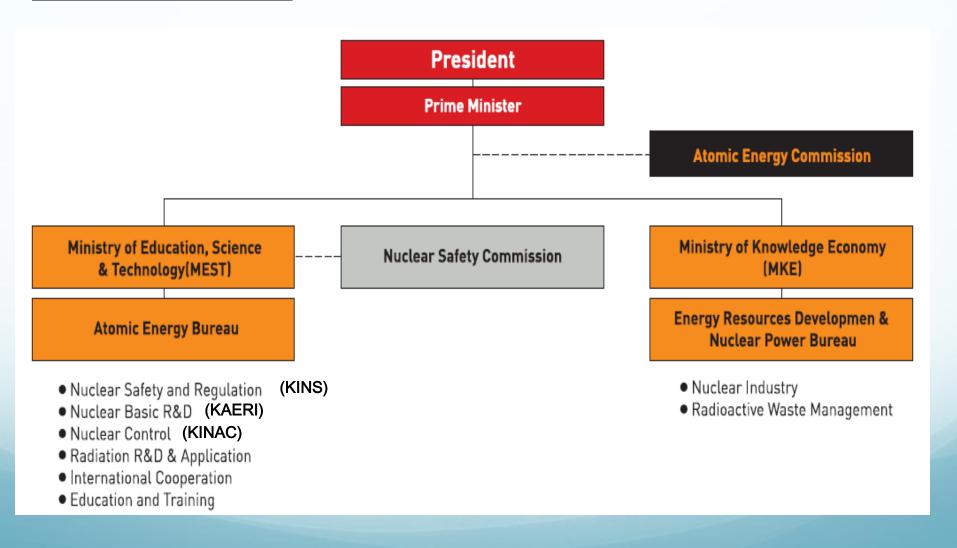
NUCLEAR SILK ROAD

THE "KOREANIZATION" OF NUCLEAR POWER TECHNOLOGY

KIM BYUNG-KOO

طريق الحرير النووي

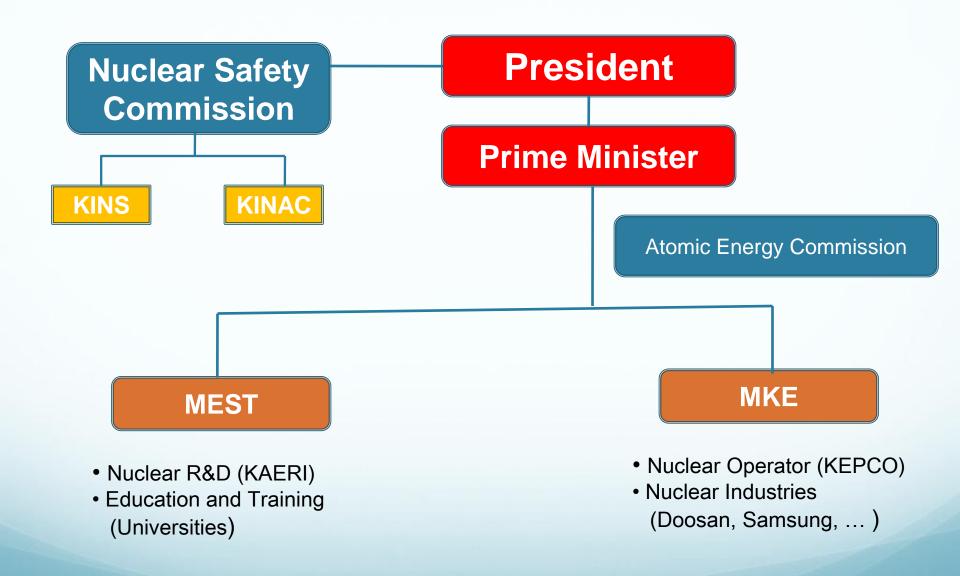
원자력비단길


核之絲綢路

Government Action Plan

BS Jeong

Nuclear Regulatory Infrastructure in Korea


Before Fukushima

Recent changes

- The National Assembly passed the revised Nuclear Act, Nuclear Safety Act on June 29, 2011.
- The Nuclear Safety Commission moved out of MEST, placed directly under the President.
- NSC chairman minister's rank
- The nuclear regulatory agencies (KINS and KINAC) reports directly to the NSC.

After Fukushima

Post-Fukushima Action Plan

MK Jo

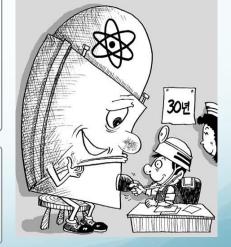
Overview

BACKGROUND

- Fukushima Accident(11, Mar) increased public concern
- Sudden Shutdown of KORI #1: 12th Apr
 - Aging NPP, Continuing Operation(licenced at Dec, 2007)

Immediate follow-ups ("stress tests")

Urgent Safety-Inspection


- 16 Mar ~ 18 Mar (3 days)
- 21 Units in Operation
- 44 Experts in KHNP, KEPCO E&C, KNFC
- Areas
 - Impact on ON/OFFsite Power
 - Integrity of core cooling system
 - Integrity of RV
 - Integrity of RadWaste Storage Tk

Safety-Inspection By Gov.

- 28 Mar ~ 13 Apr (17 days)
- 21 Units in Operation
- MEST*(KINS*)
- Areas : 27 Items in 6 Categories

Safety-Inspection On Kori #1

- 22 Apr ~ 3 May (12 days)
- MEST(KINS)

- * MEST: Ministry of Education & Science Technology
- * KINS: Korea Institute of Nuclear Safety

Immediate follow-ups ("stress tests")

Assumptions

Earthquake event → Big tsunami → Loss of electric power → Severe nuclear accident

Areas of SI

1	Safety of structures and equipment against earthquake
2	Safety of structures and equipment against coastal flooding
3	Integrity of electric power, cooling, and fire protection systems when inundation occurs
4	Severe accident response
5	Emergency Response and Emergency Medical Systems
6	Long-term, in-Service NPPs

1. Safety against earthquake

Current Status

- Design Basis Earthquake: 0.2g
- Manually Shutdown

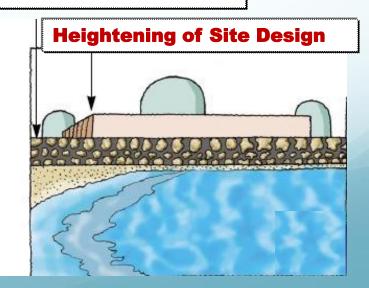
Improvements

- Installing automatic seismic trip system
 - Shutdown > 0.18g, All NPPs, ~2012
- Improving the seismic capacity of the Safe Shutdown System
 - 0.3g, All NPPs, ~2014

2. Safety against coastal flooding

Current Status

<Table> Possible maximum sea water level by the nuclear power plant's site and freeboard (m)


	Possible r coastal Storm	maximum flooding Earth- quake	Maximum possible sea water level	Site elevation*	Freeboard
Kori NPP	2.5	0.3	7.2	7.5 (Kori #1·#2) 9.5 (Kori #3·#4)	0.3 2.3
Weolsung NPP	2.0	0.5	7.2	12	4.8
Youngkwang NPP	2.3	-	8.4	10	1.6
Uljin NPP	0.9	3.0	5.7	10	4.3

Improvements

* Kori Units 1 and 2: site elevation 5.8m + sea wall 1.7m

- Extension of Sea Wall of Kori NPP
 - +2.5m(equal to 10m), ~2012
- Waterproof gate/drainage pump
 - ~2014, All NPPs

Extension of Sea Wall

3. Integrity of power, cooling, fire protection system

Current Status

- ElectricPowerSystem
- 2 EDGs / unit
 - Loss of offsite power
- 1 AAC DG / 2 or 4 units
 - Loss of cooling function(SBO)

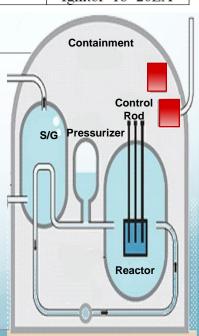
- CoolingSystem
- Redundancy(2 trains)
- SFP has multiple sources
- FireProtectionSystem
- Fire hazards analysis /10 years
- Fire protection plans

Improvements

- movable vehicle
 for generator and batteries
 - ~2014, All NPPs

- Prepare supplementary method
 - fire truck, etc,.
 - ~2013, All NPPs
- Improving the firefighting plan
- Improving fire protection facility
 - ~ 2015, All NPPs

4. Severe Accident Response


Current Status

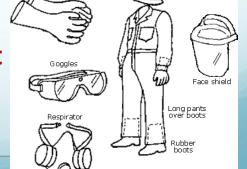
- TMI follow-up, Policy on Severe Accident (Aug. 2001)
- Hydrogen control facilities

Kori #1	Kori #2~#4, Youngkwang #1~#4, Uljin #1 #2	Weolsung #1	Weolsung #2~#4	Youngkwang #5·#6, Uljin #3~#6
Passive Hydrogen Recombiner, 34EA	Thermal Recombiner	None	Ignitor 44EA	Thermal Recombiner,
			igintoi 11221	Ignitor 18~20EA

Improvements

- passive hydrogen removal equipment
 - ~2013
- ventilation or depressurizing facilities in RCB
 - ~2015, All NPPs
- Install conduits for injecting nuclear reactor emergency cooling water from external sources
 - ~2015, All NPPs

5. Emergency Response & Emergency Medical System


Current Status

- Radiation emergency based on the "APPRE*"
- Emergency response facilities : TSC, OSC, EOF
- Emergency exercises
- ERMS : 4hours without power

Improvements

- Amending the radiation emergency plan
 - emergency alert at multiple units
 - ~2012, All NPPs
- Securing additional rad-protection equipment
 - protecting residents near NPP
 - ~2012, All NPPS

* APPRE: The Act on Physical Protection and Radiological Emergency

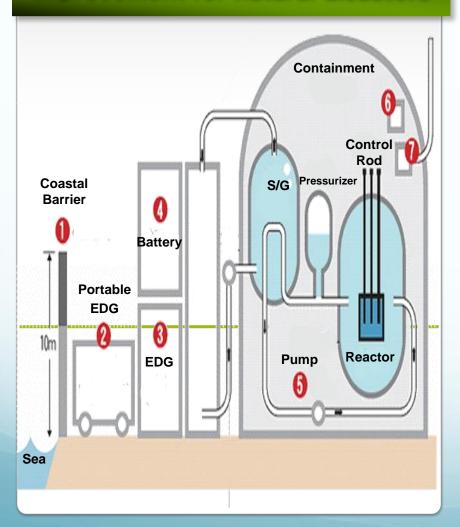
TSC (Technical Support Center), OSC (Operating Support Center), EOF(Emergency Operation Facility)

6. Long Term, In Service NPP

Current Status

A long-term, in-service inspection plan is established

: confirm the integrity of the piping of major systems(RCS, etc)


Improvements

- Drastically reinforcing the safety examinations
 - Ex) regular examination
 - ~2012, 9 NPPs
- Reinforcing management of components
- Safety related pumps, valves and pipes
- ~2012, 8 NPPs

Summary: Safety upgrades to be implemented

Improvement for natural disasters

50 short and long term plans

- 1 Making the coastal barrier higher at Kori site
- Preparing a vehicle with portable EDG at each site
- Installing watertight doors at EDG Building
- Securing the emergency battery power safe from flooding
- **6** Waterproofing pumps
- **(6)** Installing passive H₂ removal systems operating without electricity
- Installing venting and decompression equipment

~\$1.1 billion investment over 5 years

KHNP safety upgrades investment (- 2015)

(Unit: million US Dollars)

No.	Categories	NPPs operating	NPPs under construction	Total
1	Safety of structures and equipment against earthquake	98	17	115
2	Safety of structures and equipment against coastal flooding	308	17	325
3	Integrity of electric power, cooling, and fire protection systems when inundation occurs	183	17	200
4	Severe accident response	405	37	442
5	Emergency Response and Emergency Medical Systems	22	0.3	22
6	Long-term, in-Service NPP	18	-	18
	Total	1,034	88	1,123

Thank you 감사합니다