Current Status of Nuclear Power in Japan

The 2nd World Nuclear Energy Development Forum

April 28, 2017

Akio Takahashi

President JAPAN ATOMIC INDUSTRIAL FORUM,INC

Contents

- I. Current Status of NPPs in Japan
- II. Current Status of Fukushima Daiichi NPS (1F)
- III. Current Status of Areas Surrounding 1F
- IV. Post-Fukushima Safety Enhancements
- V. Challenges and Issues
- VI. Final Message

I. Current Status of NPPs in Japan Status of Restarted NPPs

Source: Meeting of Federation of Electric Companies of Japan (FEPC), Nov. 22, 2016

I. Current Status of NPPs in Japan Status of License Application for Restart

II. Current Status of Fukushima Daiichi NPS Roadmap for Decommissioning

Source: Meeting of METI 's Team for Countermeasures for Decommissioning and Contaminated Water Treatment

Copyright © JAPAN ATOMIC INDUSTRIAL FORUM, INC

II. Current Status of Fukushima Daiichi NPS Installation of Unit 3 Fuel Removal Cover

Source: TEPCO HD

II. Current Status of Fukushima Daiichi NPS PCV Internal Investigation

Purpose: To obtain current situation inside the containment vessel and its surroundings to ensure smooth removal of fuel debris.

II. Current Status of Fukushima Daiichi NPS Self-Propelled Investigation Device for Unit 1

Storage space for a camera and dosimeter When capturing digital images and measuring radiation doses

Sensor unit integrating a camera and dosimeter

When traveling on grating

Source: TEPCO HD

II. Current Status of Fukushima Daiichi NPS Self-Propelled Investigation Device for Unit 2

Copyright © JAPAN ATOMIC INDUSTRIAL FORUM, INC

Source: TEPCO HD

II. Current Status of Fukushima Daiichi NPS On-Site Tanks for Contaminated Water Treatment

II. Current Status of Fukushima Daiichi NPS Improving On-Site Working Environment

Areas not requiring full-face masks increases

Source: TEPCO HD

II. Current Status of Fukushima Daiichi NPS Improving On-Site Working Environment

On-site workers working in standard working clothes

Source: TEPCO HD

II. Current Status of Fukushima Daiichi NPS Sea Area Monitoring Status

The radioactive material concentration in the sea area by one- 1,000,000th after the accident

III. Current Status of Areas Surrounding 1F **Transition of Evacuation Zone**

Copyright © JAPAN ATOMIC INDUSTRIAL FORUM, INC

III. Current Status of Areas Surrounding 1F Changes in Radioactivity Level

Results of Airborne Radiation Monitoring (Map of air dose rate 1m above ground surface)

III. Current Status of Areas Surrounding 1F Radiation Status in Fukushima Pref.

Copyright © JAPAN ATOMIC INDUSTRIAL FORUM, INC

III. Current Status of Areas Surrounding 1F Changes in Hirono Town

Photo credit: Hirono Town

Elevated disaster prevention green area (10.7m higher than original ground level)

New public restoration housing ready for move-in, Oct. 2014

New office building opened in Mar. 2016.

16

III. Current Status of Areas Surrounding 1F Changes in Okuma Town

TEPCO Housing Units for single staff

Fukushima Meal Supply Center

III. Current Status of Areas Surrounding 1F Changes in Tomioka Town

Front of Tomioka Station after tsunami

Station square to be completed in 2017 spring

Public restoration housing (ready for move-in in April 2017)

Photo credit: Tomioka Town

III. Current Status of Areas Surrounding 1F Changes in Naraha Town

View from Tenjinmisaki (2012.11)

View from Tenjinmisaki (2017.02)

Scene of Naraha (2012.11)

Public restoration housing (move-in began in Nov. 2016)

Photo by JAIF

IV. Post-Fukushima Safety Enhancements

Comparison between Past and New Regulatory Requirements

The New Regulatory Requirements tighten measures to prevent or deal with severe accidents and acts of terrorism

* SSC: Structure, Systems and Components

Source: Nuclear Regulation Authority, Japan

IV. Post-Fukushima Safety Enhancements Improved Safety Measures

Copyright © JAPAN ATOMIC INDUSTRIAL FORUM, INC

IV. Post-Fukushima Safety Enhancements

Tsunami Countermeasures by Hamaoka NPS (Chubu EPC)

Cement-mixed soil embankment

Source: Chubu EPC

TAIF Copyright © JAPAN ATOMIC INDUSTRIAL FORUM, INC

Tsunami protection wall (22m)

IV. Post-Fukushima Safety Enhancements Voluntary Measures for Safety Enhancement

Voluntary Measures	How to achieve?
Improving methods of risk assessment & decision-making	Base on appropriate combinations of assessment results, engineering judgments, etc.
Identifying areas for improvement	Through peer reviews and responses
Conducting further discussions on safety enhancement	Base on peer review results
Improving abilities to respond to emergencies	Through operation of the Mihama Nuclear Emergency Assistance Center
Establishing a system of cooperation	Through collaboration among nuclear operators
	Source: FEPC

V. Challenges and Issues COP21 Commitment

Future Energy Mix of Japan

44% emission-free generation sources in 2030

126% total CO2 emission reduction compared with

2013

Energy Mix	2010	2013 -	2030	
Nuclear	29%	1%	20 to 22%	
Renewable	10%	11%	22 to 24%	
Thermal	61%	88%	56%	
CO2 emissions	2010	<u> 2013 </u>	2030	
total	1.304Gt	1.408Gt	1.042Gt	<u>^</u> 26%
CO2kg/kwh	0.350	0.570	0.370	

Complied by JAIF

V. Challenges and Issues Life Extension & Decommissioning

V. Challenges and Issues Life Extension & Decommissioning

		Plant Name	Commercial Operation	Reactor Type
	1	Tokai-1	1966.07	GCR
	2	Hamaoka-1	1976.03	BWR
NPPs in Japan to be	3	Hamaoka-2	1978.11	BWR
	4	Fukushima Daiichi-1	1971.03	BWR (BWR-3)
Decommissioned	5	Fukushima Daiichi-2	1974.07	BWR (BWR-4)
(as of April 2017)	6	Fukushima Daiichi-3	1976.03	BWR (BWR-4)
	7	Fukushima Daiichi-4	1978.10	BWR (BWR-4)
	8	Fukushima Daiichi-5	1978.04	BWR (BWR-4)
	9	Fukushima Daiichi-6	1979.10	BWR (BWR-5)
	10	Tsuruga-1	1970.03	BWR (BWR-5)
	11	Mihama-1	1970.11	PWR W(2 loop)
	12	Mihama-2	1972.07	PWR M(2 loop)
	13	Genkai-1	1975.10	PWR M(2 loop)
	14	Shimane-1	1974.03	BWR (BWR-3)
Complied by JAIF	15	lkata-1	1977.09	PWR M(2 loop)

V. Challenges and Issues **Efforts to Improve Public Understanding**

Public Poll on Nuclear Power

27

V. Challenges and Issues Dispelling Unfounded Fears and Rumors

Reference Values for Cesium Concentration in Foods

[Unit: Bg/kg]

	Japan (2012.4-)	Codex Alimentarious Commission※	EU (Products distributed within the EU)	U.S.A.
Drinking water	10	1000	1000	1200
Milk	50	1000	1000	1200
General food	100	1000	1250	1200
Baby food	50	1000	400	1200

Note: As seen in the next slide, the assumptions for calculating reference values vary; thus the reference values can be quite different and are not directly comparable.

※ An intergovernmental organization issuing international food standards (Codex Standards), established in 1963 by the Food and Agriculture Organization and the World Health Organization (WHO) of the United Nations.

Source: Basic Information on Radiation Risk, Cabinet Office, Et Al. (February 2016)

V. Challenges and Issues Dispelling Unfounded Fears and Rumors

Reference Values for Cesium Concentration in Foods

Assumptions in calculations of reference values

	Standard Limit	Assumption		
Japan	Upper limit of additional effective dose by food ingestion at 1 mSv/year	50% of general foods are contaminated at levels equivalent to the reference value. Given that marketed milk and baby food are mostly domestically produced, the effective dose from them is half the reference value for general foods.		
Codex Alimentarius Commission	Based on the Operational Intervention Level of 1 mSv/year (below which no need for special measures)	10% of all foods come from radioactively contaminated areas.		
EU	Additional exposure dose of not more than 1 mSv/year	10% of all foods _for human consumption in a lifetime are contaminated at levels equivalent to regulation values.		
U.S.A.	Effective dose of 5 mSv/year	30% of all food intake is radioactively contaminated.		

Source: Basic Information on Radiation Risk, Cabinet Office, Et Al. (February 2016)

V. Challenges and Issues Dispelling Unfounded Fears and Rumors

Efforts to Ensure Safety of Food in Fukushima

Monitoring of Fukushima Food Products

- Fukushima Prefecture conducts repeated inspections on all local food products in each stage of production, distribution and consumption, in order to ensure their safety.
- Only primary products certified to be safe through multiple inspections in each stage are shipped out to the market.

Food Types	# of Inspected Cases	Cases Exceeding Standard Limits	Ratio		
Brown rice (2006 grown)	8,600,000	0	0.00%		
Fruits & vegetables	2,998	0	0.00%		
Livestock	2,496	0	0.00%	No single case	
Cultivated mushrooms	562	0	0.00%	inspection	
Marine fish & shellfish	4,908	0	0.00%	standard limits!	
Farm-raised fish	66	0	0.00%)	
Edible wild plants & mushrooms	1,031	2	0.19%		
Freshwater fish	502	4	0.80%		
Data collected between 2016.4.1-10.31					

(Brown rice: 2016.8.24-10.31)

Source: *Steps for Revitalization in Fukushima* (Dec. 5, 2016 edition), Fukushima Pref.

VI. Final Message

「知己知彼,百战百胜」 (孙子兵法)

To know one's own strength and the enemy's is the sure way to victory. (The Art of War by Sun Tzu)

Thank you very much for your attention.

Akio Takahashi www.jaif.or.jp/en/

